I. Raw Material Kuongorora uye Pretreatment Optimization
- .High-Precision Ore Grading: Kudzidza kwakadzama-kwakavakirwa kucherechedzwa kwemifananidzo masisitimu anoongorora hunhu hweores (semuenzaniso, saizi yechidimbu, ruvara, magadzirirwo) munguva chaiyo, kuwana pamusoro pe80% yekudzikisa kukanganisa zvichienzaniswa nekurongwa nemaoko.
- .High-Efficiency Material Kuongorora: AI inoshandisa muchina kudzidza algorithms kukurumidza kuona vakachena-yakanyanya kuchena kubva kumamirioni emusanganiswa wezvinhu. Semuyenzaniso, mu lithium-ion bhatiri electrolyte kuvandudzwa, kuongorora kushanda zvakanaka kunowedzera nemirairo yehukuru kana ichienzaniswa nemaitiro echinyakare.
II. Dynamic Kugadziridzwa kweMatanho Paramita
- .Key Parameter Optimization: Mu semiconductor wafer kemikari vapor deposition (CVD), ma AI mamodheru anotarisisa paramita se tembiricha uye kuyerera kwegasi munguva chaiyo, kushandura zvine simba maitiro ekudzikisa kusachena kwasara ne22% uye kuvandudza goho ne18%.
- .Multi-Process Collaborative Control: Yakavharwa-loop mhinduro masisitimu anobatanidza kuyedza dhata neAI fungidziro kukwirisa synthesis nzira uye maitiro ekuita, kuderedza kucheneswa kushandiswa kwesimba nepamusoro pe30%.
III. Hungwaru Kusachena Kuonekwa uye Kudzora Hunhu
- .Microscopic Defect Identification: Kuona kwekombiyuta yakabatanidzwa nepamusoro-resolution imaging inoona kuputika kwenanoscale kana kuparadzirwa kwehutsvina mukati mezvinhu, kuwana 99.5% yakarurama uye kudzivirira kusvibiswa kwekuita mushure mekuchenesa 8 .
- .Spectral Data Analysis: AI algorithms inodudzira otomatiki X-ray diffraction (XRD) kana Raman spectroscopy data kuti ikurumidze kuona mhando dzetsvina uye kutariswa, ichitungamira nzira dzakanangana dzekuchenesa.
IV. Maitiro otomatiki uye Kubudirira Kuwedzera
- .Robhoti-Inobatsirwa Kuedza: Hungwaru marobhoti masisitimu anogadzirisa kudzokorora mabasa (semuenzaniso, kugadzirisa mhinduro, centrifugation), kuderedza kupindira kwemanyore ne60% uye kuderedza zvikanganiso zvekushanda.
- .Kuedza kwepamusoro-soro: AI-inotyairwa otomatiki mapuratifomu anogadzira mazana ezviyedzo zvekunatsa zvakafanana, achimhanyisa kuzivikanwa kweakakwana maitiro musanganiswa uye kupfupisa R&D kutenderera kubva pamwedzi kusvika kumavhiki.
V. Data-Inofambiswa Nechisarudzo-Kuita uye Multi-Scale Optimization
- .Multi-Source Data Kubatanidzwa: Nekubatanidza kuumbwa kwezvinhu, maparamita ekuita, uye data rekuita, AI inovaka mamodheru ekufembera emhedzisiro yekucheneswa, ichiwedzera R&D budiriro nepamusoro pe40%.
- .Atomic-Level Structure Simulation: AI inobatanidza density functional theory (DFT) kuverenga kufanotaura nzira dzekutama kweatomu panguva yekucheneswa, ichitungamira nzira dzekugadzirisa retice defect.
Case Study Kuenzanisa
Scenario | Traditional Method Limitations | AI Solution | Kuvandudza Kuita |
Metal Refining | Kuvimba nekuongorora kuchena kwemaoko | Spectral + AI chaiyo-nguva yekusachena yekutarisa | Kuchena kutevedza mwero: 82% → 98% |
Semiconductor Kucheneswa | Yakanonoka kugadzirisa parameter | Dynamic parameter optimization system | Batch processing time yakaderedzwa ne25% |
Nanomaterial Synthesis | Kuparadzirwa kwehukuru husingaenderani | ML-inodzorwa synthesis mamiriro | Particle kufanana kwakavandudzwa ne50% |
Kuburikidza nenzira idzi, AI haingogadzirise paradigm yeR&D yekucheneswa kwezvinhu asiwo inofambisa indasitiri kuhungwaru uye budiriro inoenderera.
Nguva yekutumira: Mar-28-2025