Zvakananga Mabasa eArtificial Intelligence muKucheneswa kwezvinhu

News

Zvakananga Mabasa eArtificial Intelligence muKucheneswa kwezvinhu

I. Raw Material Kuongorora uye Pretreatment Optimization

  1. .High-Precision Ore Grading: Kudzidza kwakadzama-kwakavakirwa kucherechedzwa kwemifananidzo masisitimu anoongorora hunhu hweores (semuenzaniso, saizi yechidimbu, ruvara, magadzirirwo) munguva chaiyo, kuwana pamusoro pe80% yekudzikisa kukanganisa zvichienzaniswa nekurongwa nemaoko.
  2. .High-Efficiency Material Kuongorora: AI inoshandisa muchina kudzidza algorithms kukurumidza kuona vakachena-yakanyanya kuchena kubva kumamirioni emusanganiswa wezvinhu. Semuyenzaniso, mu lithium-ion bhatiri electrolyte kuvandudzwa, kuongorora kushanda zvakanaka kunowedzera nemirairo yehukuru kana ichienzaniswa nemaitiro echinyakare.

II. Dynamic Kugadziridzwa kweMatanho Paramita

  1. .Key Parameter Optimization: Mu semiconductor wafer kemikari vapor deposition (CVD), ma AI mamodheru anotarisisa paramita se tembiricha uye kuyerera kwegasi munguva chaiyo, kushandura zvine simba maitiro ekudzikisa kusachena kwasara ne22% uye kuvandudza goho ne18%.
  2. .Multi-Process Collaborative Control: Yakavharwa-loop mhinduro masisitimu anobatanidza kuyedza dhata neAI fungidziro kukwirisa synthesis nzira uye maitiro ekuita, kuderedza kucheneswa kushandiswa kwesimba nepamusoro pe30%.

III. Hungwaru Kusachena Kuonekwa uye Kudzora Hunhu

  1. .Microscopic Defect Identification: Kuona kwekombiyuta yakabatanidzwa nepamusoro-resolution imaging inoona kuputika kwenanoscale kana kuparadzirwa kwehutsvina mukati mezvinhu, kuwana 99.5% yakarurama uye kudzivirira kusvibiswa kwekuita mushure mekuchenesa 8 .
  2. .Spectral Data Analysis: AI algorithms inodudzira otomatiki X-ray diffraction (XRD) kana Raman spectroscopy data kuti ikurumidze kuona mhando dzetsvina uye kutariswa, ichitungamira nzira dzakanangana dzekuchenesa.

IV. Maitiro otomatiki uye Kubudirira Kuwedzera

  1. .Robhoti-Inobatsirwa Kuedza: Hungwaru marobhoti masisitimu anogadzirisa kudzokorora mabasa (semuenzaniso, kugadzirisa mhinduro, centrifugation), kuderedza kupindira kwemanyore ne60% uye kuderedza zvikanganiso zvekushanda.
  2. .Kuedza kwepamusoro-soro: AI-inotyairwa otomatiki mapuratifomu anogadzira mazana ezviyedzo zvekunatsa zvakafanana, achimhanyisa kuzivikanwa kweakakwana maitiro musanganiswa uye kupfupisa R&D kutenderera kubva pamwedzi kusvika kumavhiki.

V. Data-Inofambiswa Nechisarudzo-Kuita uye Multi-Scale Optimization

  1. .Multi-Source Data Kubatanidzwa: Nekubatanidza kuumbwa kwezvinhu, maparamita ekuita, uye data rekuita, AI inovaka mamodheru ekufembera emhedzisiro yekucheneswa, ichiwedzera R&D budiriro nepamusoro pe40%.
  2. .Atomic-Level Structure Simulation: AI inobatanidza density functional theory (DFT) kuverenga kufanotaura nzira dzekutama kweatomu panguva yekucheneswa, ichitungamira nzira dzekugadzirisa retice defect.

Case Study Kuenzanisa

Scenario

Traditional Method Limitations

AI Solution

Kuvandudza Kuita

Metal Refining

Kuvimba nekuongorora kuchena kwemaoko

Spectral + AI chaiyo-nguva yekusachena yekutarisa

Kuchena kutevedza mwero: 82% → 98%

Semiconductor Kucheneswa

Yakanonoka kugadzirisa parameter

Dynamic parameter optimization system

Batch processing time yakaderedzwa ne25%

Nanomaterial Synthesis

Kuparadzirwa kwehukuru husingaenderani

ML-inodzorwa synthesis mamiriro

Particle kufanana kwakavandudzwa ne50%

Kuburikidza nenzira idzi, AI haingogadzirise paradigm yeR&D yekucheneswa kwezvinhu asiwo inofambisa indasitiri kuhungwaru uye budiriro inoenderera.

 

 


Nguva yekutumira: Mar-28-2025